Individual Pitch Control of Variable Speed Wind Turbines with DFIG by Flicker Mitigation

نویسنده

  • B. Nirosha
چکیده

Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable speed wind turbine with a doubly fed induction generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind turbines during continuous operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (...

متن کامل

Evaluation of Voltage Flicker Emissions of Variable Speed Dfig-based Wind Turbines

Wind-energy systems cause fluctuations more than any other sources and hence, voltage fluctuations are expected with these units. This paper addresses the problem of voltage fluctuation caused by doubly fed induction generators (DFIG)-based variable-speed wind turbines. Flicker emission of these units is investigated during continuous operation. The effects of grid strength, angle of grid imped...

متن کامل

Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines

This thesis deals with the analysis, modeling, and control of the doubly-fed induction generator (DFIG) for wind turbines. Different rotor current control methods are investigated with the objective of eliminating the influence of the back electromotive force (EMF), which is that of, in control terminology, a load disturbance, on the rotor current. It is found that the method that utilizes both...

متن کامل

Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed

One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine cu...

متن کامل

International Journal of Smart Grid and Clean Energy Mitigation of Wind Power Fluctuation by Active Current Control of Variable Speed Wind Turbines

Wind shear and tower shadow are the sources of power fluctuation of grid connected wind turbines during continuous operation. This paper presents a simulation model of a MW-level doubly fed induction generator (DFIG) based variable speed wind turbine with a partial-scale back-to-back power converter in Simulink. A simple and effective method of wind power fluctuations mitigation by active curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015